62 research outputs found

    Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships; an experimental approach

    Get PDF
    AbstractReduction in ship resistance, in order to decrease fuel consumption and also achieve higher speeds, has been the topic of major research over the last three decades. One of the most attractive ideas in this field is micro bubble drag reduction, which attempts to obtain optimum injection flow rate based on ship specifications. The model test results of a 70 cm catamaran model was used to quantify the effect of air injection rate on drag reduction, and to estimate a simple formulation for calculating an efficient injection rate by considering the main parameters of the ship, such as: length, width and speed. The test results show that excessive air injection decreases the drag reduction effect, while suitable injection reduces total drag by about 5%–8%

    Enhancing the renewable energy payback period of a photovoltaic power generation system by water flow cooling

    Get PDF
    A photovoltaic system which enjoys water flow cooling to enhance the performance is considered, and the impact of water flow rate variation on energy payback period is investigated. The investigation is done by developing a mathematical model to describe the heat transfer and fluid flow. A poly crystalline PV module with the nominal capacity of 150 W that is located in city Tehran, Iran, is chosen as the case study. The results show that by increasing water flow rate, EPBP declines first linearly, from the inlet water flow rate of 0 to 0.015 kg.s-1, and then, EPBP approaches a constant value. When there is no water flow cooling, EPBP is 8.88, while by applying the water flow rate of 0.015 kg.s-1, EPBP reaches 6.26 years. However, only 0.28 further years decrement in EPBP is observed when the inlet water mass flow rate becomes 0.015 kg.s-1. Consequently, an optimum limit for the inlet water mass flow rate could be defined, which is the point the linear trend turns into approaching a constant value. For this case, as indicated, this value is 0.015 kg.s-1

    Energy and Exergy Analyses on Seasonal Comparative Evaluation of Water Flow Cooling for Improving the Performance of Monocrystalline PV Module in Hot-Arid Climate

    Get PDF
    Solar irradiation in hot-arid climatic countries results in increased temperatures, which is one of the major factors affecting the power generation efficiency of monocrystalline photovoltaic (PV) systems, posing performance and degradation challenges. In this paper, the efficiency of a water-flow cooling system to increase the output of a monocrystalline PV module with a rated capacity of 80 W is studied from both energy and exergy perspectives. The energy and exergy tests are performed for each season of the year, with and without cooling. The energy and exergy efficiencies, as well as the commodity exergy values, are used to compare the photovoltaic device with and without cooling. The findings are based on the experimental data that were collected in Tehran, Iran as an investigated case study in a country with a hot-arid climate. The findings show that when water-flow cooling is used, the values of the three efficiency metrics change significantly. In various seasons, improvements in regular average energy efficiency vary from 7.3% to 12.4%. Furthermore, the achieved increase in exergy efficiency is in the 13.0% to 19.6% range. Using water flow cooling also results in a 12.1% to 18.4% rise in product exergy

    The road to developing economically feasible plans for green, comfortable and energy efficient buildings

    Get PDF
    Owing to the current challenges in energy and environmental crises, improving buildings, as one of the biggest concerns and contributors to these issues, is increasingly receiving attention from the world. Due to a variety of choices and situations for improving buildings, it is important to review the building performance optimization studies to find the proper solution. In this paper, these studies are reviewed by analyzing all the different key parameters involved in the optimization process, including the considered decision variables, objective functions, constraints, and case studies, along with the software programs and optimization algorithms employed. As the core literature, 44 investigations recently published are considered and compared. The current investigation provides sufficient information for all the experts in the building sector, such as architects and mechanical engineers. It is noticed that EnergyPlus and MATLAB have been employed more than other software for building simulation and optimization, respectively. In addition, among the nine different aspects that have been optimized in the literature, energy consumption, thermal comfort, and economic benefits are the first, second, and third most optimized, having shares of 38.6%, 22.7%, and 17%, respectively

    Finite-time consensus in directed switching network topologies and time-delayed communications

    Get PDF
    AbstractThere are many practical situations where it is desirable or even required to achieve stable convergence in the finite-time domain. In this paper, a simple distributed continuous-time protocol is introduced that guarantees finite-time consensus in networks of autonomous agents. Protocol convergence in weighted directed/undirected and fixed/switching networks is explored based on a Lyapunov analysis. The stability of the system and the solvability of the consensus algorithm are proved for network topologies that contain a spanning tree frequently enough over contiguous time intervals. The decision value for different topologies and for multi-rate integrator agents is investigated, and a novel approach is proposed to determine the leader subgroup of agents. Communication time-delay and chattering phenomenon in the system are assessed, and additionally some protocols with Lipschitz right-hand sides are introduced. Herein, all proposed consensus strategies use a limited-gain control input to account for the physical limitation of control actuation devices, which, in general, are subject to amplitude saturation

    Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships; an experimental approach

    No full text
    Reduction in ship resistance, in order to decrease fuel consumption and also achieve higher speeds, has been the topic of major research over the last three decades. One of the most attractive ideas in this field is micro bubble drag reduction, which attempts to obtain optimum injection flow rate based on ship specifications. The model test results of a 70 cm catamaran model was used to quantify the effect of air injection rate on drag reduction, and to estimate a simple formulation for calculating an efficient injection rate by considering the main parameters of the ship, such as: length, width and speed. The test results show that excessive air injection decreases the drag reduction effect, while suitable injection reduces total drag by about 5%–8%

    Improvement of energy systems using the soft computing techniques

    No full text
    For complex energy systems, due to non-linear and usually non-explicit variable relationships on the one hand and incomplete mathematical model on the other, the term optimisation implies improvement rather than calculation of an overall optimum point. Therefore, the improvement procedure is performed based on the experiences of experts that can be translated into a class of soft computing technique so-called the fuzzy inference system (FIS). In this paper, a cogeneration power plant which generated the net electric power of 30.0 MW and could provide 14.0 kg s–1 of saturated steam at 2 MPa, namely as CGAM problem, was considered as a benchmark for exergoeconomic improvement using the FIS. The FIS system was designed to improve the overall system based on the improvement of each system component of the CGAM system. It was shown that the FIS could achieve a value for exergoeconomic objective function which was very close to the mathematical optimal solution

    Nonlinear modeling and simulation of thermal effects in microcantilever resonators dynamic

    No full text
    Thermal dependency of material characteristics in micro electromechanical systems strongly affects their performance, design, and control. Hence, it is essential to understand and model that in MEMS devices to optimize their designs. A thermal phenomenon introduces two main effects: damping due to internal friction, and softening due to Young modulus temperature relation. Based on some reported theoretical and experimental results, we model the thermal phenomena and use two Lorentzian functions to describe the restoring and damping forces caused by thermal phenomena. In order to emphasize the thermal effects, a nonlinear model of the MEMS, by considering capacitor nonlinearity, have been used. The response of the system is developed by employing multiple time scales perturbation method on nondimensionalized form of equations. Frequency response, resonant frequency and peak amplitude are examined for variation of dynamic parameters involved
    • …
    corecore